KM3NeT - KM3NeT

Liveblog about the ongoing sea operation for ARCA

10 September 2021 – In the evening of September 10, five new detection units of KM3NeT, onboard the Handin Tide, will sail from Malta headed to the KM3NeT/ARCA detection site. This site is located 80 km off the coast of Capo Passero, Sicily (Italy). During a 1-week operation, the detection units will be deployed and connected to the ARCA neutrino telescope at 3,500 m depth, adding up to the six already in operation.

The expectation is high for this new, important step in the construction of KM3NeT. Despite the pandemic, the Collaboration has worked hard to keep the high integration speed needed for such an ambitious project. The detection units include components prepared in various European laboratories, and also the integration, testing and installation of the units on their deployment vehicles was a joint effort of many different KM3NeT teams.

As we write this note, the detection units are safely restrained on the deck of Handin Tide, the ship crew and the KM3NeT offshore team are onboard and ready, and the ship is about to set sail. Onshore, everything is ready in the control station in Portopalo di Capo Passero. The motivation, everywhere, is very high.

We look forward to several days packed with hard work and documented with extraordinary images from the sea surface and the deep sea.

Follow the action while it takes place through our social media channels and our ARCA-blog!

 

 

The detection units awaiting deployment on the deck of Handin Tide. Note that the equipment has been already prepared in the order in which it will be moved off the ship: first, two tripods carrying an acoustic beacon each (partially visible in the picture) for the acoustic positioning system, then the reels carrying long cables for connection to the existing submarine network on the sea floor, then the detection units.


Handin Tide left the harbour of Malta

10 September 2021 – the Handin Tide left the port of Malta around 5 p.m. CEST.

The navigation to the KM3NeT site is estimated to take about 10 hours.

The weather forecast is good. The activity on site will start early morning tomorrow.

Keep following the  ARCA-blog.


Yet another virtual spring meeting

A few weeks ago, KM3NeT held its two-week long spring meeting, once again virtually, like almost all meetings nowadays.

With twelve detection units operating in the ARCA and ORCA detectors, it was a joy to discuss the progress of the data analysis groups and prepare for the reports at the summer conferences. With our smooth network of almost twenty production sites new detection units are being prepared at the maximum speed that the COVID-19 restrictions allow. New deployment campaigns are in preparation.

Although at a distance, we felt close to each other thanks to the virtual coffee breaks in the gather town set up by our colleagues of Laboratoire de Physique Corpusculaire de Caen (many thanks!). We concluded the meeting with an exciting quest to fix the unexpected problems found in a virtual shift room: this was a run against the clock to find out the password to get free from the locked room and reconvene for a final party at the bottom of the sea – real shifts won’t ever be so hilarious!

As usual, the meeting was also the occasion to welcome the many newcomers and to remind the accomplishments of those that are leaving the collaboration for a next step in their professional career. Thanks a lot for your work for KM3NeT. We wish you all the best and success in your  new working environment!

We sincerely congratulate Diego Real whose PhD thesis was recently awarded an important prize of the Spanish Society of Astronomy!

We were pleased to welcome new teams from the University of Toulon and Institut de Ciències del Mar in Barcelona – both aim at new investigations in the deep-sea environment and have already collaborated with the ANTARES telescope and the NEMO pilot project in the Mediterranean.

Among the new activities announced at the meeting: an Open Science Committee has been established, while the representatives of our early-career-scientists put forward a plan for making the life of our youngest collaborators easier even in these difficult times.

It was a fruitful and pleasant meeting!

The call for an institute to organise the next Collaboration meeting in the fall has been opened – hopefully the next meeting will be in person?


New publication: Neutrino Mass Ordering and Oscillation Parameters

05 May 2021 – The potential of KM3NeT to measure key properties of neutrinos – in March 2021, the KM3NeT Collaboration released a publication showing that  KM3NeT with its ORCA detector will be in an excellent position to study the phenomenon of neutrino oscillations!

Three neutrino flavours and oscillation

Neutrinos come in three species called flavours: the electron neutrino, the muon neutrino, and the tau neutrino. In the 1960’s, the first experiment was started to study the sun by measuring the flux of electron neutrinos that the solar nuclear processes copiously produce. The experiment revealed that the flux was inconsistent with the expectations! Many solutions were put forward to explain the discrepancy until a measurement of the flux of neutrinos of all three flavours was made and found compatible with the expectation. This key measurement meant that the expectations for the neutrino flux produced by the sun were correct and that the electron neutrinos were converted into other flavours while traveling to Earth. This phenomenon is called neutrino oscillation, subsequently detected also in other contexts. This phenomenon is only explained by quantum mechanics and requires that the neutrinos, initially thought massless, are actually massive!

Neutrino admixture

The neutrinos with definite masses happen to be different from the neutrinos with definite flavours. In other words, a neutrino of a given flavour is an admixture of the neutrinos of definite mass as shown in the top part of fig:1. Because of the mass difference between the neutrino mass states, these states do not propagate at the same velocity. As a result, the neutrino admixture evolves during the propagation, as shown in the bottom part of fig:1. In other words, while propagating, the neutrino flavour changes.

 

Figure 1: Top:the mass state admixtures corresponding to the flavour (so-called weak) states for 2 neutrinos. Middle: a muon neutrino is produced at t=0. As time goes, the neutrino mixture varies reaching periodically a pure muon neutrino state. The probability for the neutrino to be detected in each flavour is represented at the bottom. Reproduced from Slansky et al. Los Alamos Sci. 25 (1997) pp. 28-63.

Using atmospheric neutrinos

The KM3NeT Collaboration aims to study this oscillation phenomenon using neutrinos produced in the collisions of cosmic rays onto the atmosphere. Using these neutrinos, the KM3NeT Collaboration will be able to measure one of the key parameters ruling the neutrino admixture: the so-called θ23 mixing angle. We will also be able to measure the squared mass difference between two of the neutrino mass states – δm232 – and to tell which of the three mass states is the heaviest, i.e. determining the neutrino mass ordering as shown in fig:2. Finally, we will check if the standard three neutrino oscillation paradigm is valid by measuring the fraction of cosmic-ray induced neutrinos that have oscillated to the tau neutrino.

Figure 2: Sensitivity to neutrino mass ordering as a function of data taking time for both normal (red upward pointing triangles) and inverted ordering (blue downward pointing triangles). See the paper for more details and the values of the oscillation parameters considered to obtain the result.

Unique potential

The publication relies on precise simulations to determine the sensitivity of the KM3NeT/ORCA detector to these parameters. The prospects show that the experiment has a unique ability to make these measurements and that world best results can be obtained in few years of data taking with the full detector.

The publication has been submitted to EPJ-C and is available as a pre-print as arXiv:2103.09885.

 


Exciting deployment on the ARCA site!

15 April 2021 – During the last few weeks – despite the pandemic – the KM3NeT Collaboration worked hard to make five new detection units for ARCA ready for deployment. Spooled on their launching vehicles they arrived at the harbour of Malta where a team of KM3NeT technicians, engineers, and scientists inspected thoroughly the units for the last time before they were loaded onto the Miss Marilene Tide of the FUGRO company. In the early morning of 8th April the ship sailed out toward the IDMAR site of ARCA near Sicily for an amazing sea operation. After installing several new components for the seafloor network, on Monday 12 April the deployment of the five new detection units began.

Press_release_ARCA_042021 (pdf)

 

Detection unit approaching touch down at the seabed, 3500 m deep.

 

Junction box at the seabed with the plugs of five detection units.

 

Located in the Mediterranean Sea at a depth of 3,500 m about 80 km offshore Capo Passero, Sicily, the ARCA telescope together with its sister telescope ORCA, located offshore Toulon, France will allow scientists to identify the sources of high-energy cosmic neutrinos emanating from cataclysmic events in the Universe and to study the fundamental properties of the elusive neutrino.

Once complete, the KM3NeT/ARCA detector will form an array of more than two hundred detection units. Each of the 700 m tall units comprises 18 optical modules equipped with ultra-sensitive light sensors that register the faint flashes of light generated by neutrino interactions in the pitch-black abyss of the Mediterranean Sea.

The journey of our new detection units started earlier this month where, after being assembled and prepared for deployment, they left the labs in Catania and Naples on the ferry for Malta. The detection units represent the output of a construction effort distributed over many institutes of the Collaboration.

It took only two days to deploy, test and connect the five new units to the seafloor network. They add to the first detection unit of the apparatus, deployed as early as 2015. In the control room in Capo Passero the first data after connection were recorded immediately. An amazing sea operation came thus to an end, marking a big step for KM3NeT, which is operating now with six detection units in ARCA and also six at ORCA. KM3NeT is now ready to sustain mass construction of the apparatuses at the two sites.

Stay tuned: next sea campaigns for ARCA and ORCA are planned in a few months!

 

The five detection units of KM3NeT onboard the deployment ship.

 

Control of the operation from the shore laboratory in Portopalo di Capo Passero (the operation was performed in full respect of the anti-COVID-19 safety measures).

 

 

Enjoy the videos of the sea operation at our KM3NeTneutrino YouTube channel

 

KM3NeTneutrino Youtube channel:

Overboarding of the junction box (aerial view):

Overboarding of a detection unit:

Contact:


Six KM3NeT/ARCA detection units operational in the deep sea

KM3NeT PRESS RELEASE – 15/04/2021

Press_release_ARCA_042021 (pdf)

During a week-long sea campaign, 8-14 April 2021, the seafloor infrastructure offshore Sicily has been successfully upgraded. In addition, five new detection units of the kilometre cube neutrino telescope KM3NeT/ARCA have been connected and are operational.

Located in the Mediterranean Sea at a depth of 3500 m, about 80 km offshore Capo Passero, Sicily, the ARCA telescope together with its sister detector ORCA, located offshore Toulon, France will allow scientists to identify the astrophysical sources of high-energy cosmic neutrinos and to study the fundamental properties of the neutrinos, the most elusive and pervasive of the known elementary particles. The two detectors will also provide unprecedented opportunities for Earth and Sea science studies.

Once complete, the KM3NeT/ARCA detector will form an array of more than two hundred detection units. Each of these 700 m tall structures comprises 18 modules equipped with ultra-sensitive light sensors that register the faint flashes of light generated by neutrino interactions in the pitch-black abyss of the Mediterranean Sea.

During the first part of the sea operation, a new junction box, a hub for the power distribution and data transmission of the detection units, was added to the sea floor infrastructure. The junction box is connected via an electro-optical cable to the recently renovated onshore INFN laboratory located in Portopalo di Capo Passero. In the second part of the operation, five new KM3NeT detection units were deployed, individually connected by a remotely operated submersible to the junction box and unfurled to their final vertical configuration.

As a final step, the first detection unit of the apparatus, which had been deployed as early as 2015, was connected to the new junction box.In total, six detection units are now in operation, representing the initial core of the KM3NeT/ARCA neutrino telescope. With the six ORCA detection units already taking data, the KM3NeT neutrino observatory has now comparable sensitivity to that of its
predecessor, the ANTARES neutrino telescope.

KM3NeT is an international collaboration of over 250 scientists from more than fifty scientific institutes around the World. KM3NeT has been included in the list of high priority projects selected by the European Strategy Forum on Research Infrastructures (ESFRI).

Paschal Coyle, Spokesperson of the Collaboration emphasises: “The successful deployment and operation of multiple ARCA detection
units is another major step forward for the KM3NeT project. Now it’s full steam ahead with the construction of the hundreds of detection units to be deployed at the French and Italian sites.”

The activities in Italy are supported by the Sicilian Region in the framework of the IDMAR project. The goal of IDMAR is to upgrade the sea research infrastructures in Sicily, including the KM3NeT/ARCA site.

This campaign demonstrates once again the technological capabilities of KM3NeT and IDMAR to manage such complex marine operations”, says Giacomo Cuttone, Scientific Director of the IDMAR project.

PICTURES

The five detection units of KM3NeT onboard the deployment ship.

Preparation of a detection unit for deployment.

Deployment of the new junction box for the sea floor infrastructure.

Deployment of a detection unit of KM3NeT.

 

One of the detection units of KM3NeT reaching the sea floor.

Connections on the submarine junction box (3,500 m depth).

Control of the operation from the shore laboratory in Portopalo di Capo Passero (the
operation was performed in full respect of the anti-COVID-19 safety measures).

END of PRESS RELEASE

 

For editors, not for publication.

Additional information:

ARCA-Astroparticle Research with Cosmics in the Abyss
ORCA-Oscillation Research with Cosmics in the Abyss

KM3NeTneutrino Youtube channel:

Link to a video of the overboarding of the junction box (aerial view):

Link to a video of the overboarding of a detection unit:

Contact:
Paschal Coyle, Spokesperson of the KM3NeT Collaboration (coyle@cppm.in2p3.fr)
Giacomo Cuttone, Scientific Director of the IDMAR project (cuttone@lns.infn.it)

KM3NeT web site:
https://www.km3net.org


New publication:  core-collapse supernova explosions

11 March 2021 – In February 2021, the KM3NeT Collaboration released a publication describing the potential of KM3NeT to detect low-energy neutrinos from a future core-collapse supernova. The publication is submitted to the European Physical Journal  C.

What is a core-collapse supernova?

Core-collapse supernovae  are very energetic explosions that can end the life of massive stars. They have the peculiar feature of releasing about 99% of their energy as a huge flux of low-energy neutrinos. The neutrinos can escape the stellar core carrying information on the physical processes at play in the collapse, when the star is still opaque to light.

How well can KM3NeT observe a core-collapse supernova?

Thanks to the technology of KM3NeT based on the multifaceted modules with light sensors the KM3NeT detectors are particularly sensitive to the low-energy neutrinos from a supernova.  In the publication it is shown that KM3NeT  – when finished building the detectors –  can reach a 5 sigma discovery potential to observe a core-collapse supernova happening in the Milky Way. For the most optimistic theoretical models describing core-collapse supernovae, the detection threshold can extend up to the Large Magellanic Cloud.

The potential sensitivity of the KM3NeT detectors with 230 detection units in the ARCA detector and 115 units in the ORCA detector as a function of distance of the core-collapsed supernova. Curves are shown for three different masses of the progenitors.

Details

Once a core-collapsed supernova is observed, researchers of KM3NeT can study aspects of the neutrino emission such as the detected neutrino light curve and the neutrino spectrum. This will provide the potential for discrimination between different theoretical models of core-collapse supernovae and help to understand the physical processes behind the explosion mechanism. The time of arrival of the neutrino signal can be determined with an accuracy better than 10 ms for a source at the Galactic Center. The oscillating signature of hydrodynamical instabilities and other physical processes impacting the neutrino time profile can also be detected for nearby events: 3 sigma at 3-8 kpc, depending on the model. From the recorded coincidences, KM3NeT will be able to infer the properties of the neutrino spectrum, estimating the mean neutrino energy with a precision of about 2% if the other spectral parameters such as the energy scale and pinching parameter are known with a small uncertainty.

Neutrino light curves expected using the future full ARCA detector of 230 detection units, from a core-collapse supernova at a distance of 5 kpc and a progenitor of 27 solar masses.

What is possible with the current six detection units of the ORCA detector?

Already with the six detection units of the ORCA detector currently taking data, a detection at 5 sigma level of a core-collapse supernova can be achieved for supernovae at distances up to 10 kpc. The online analysis pipeline is in place, sending warning messages to SNEWS  – the worldwide network  for early warning for supernova events. The first MeV neutrino follow-ups of warnings by gravitational-wave detectors were performed using the data of only four ORCA detection detection units  that were active at that time, bringing the first KM3NeT physics results.

 

Exciting times are ahead. KM3NeT is ready for the observation of the next core-collapse supernova event in our Galaxy!


A collaboration in corona times

18 February 2021 – Like everyone else the KM3NeT Collaboration has to follow the restrictive measures against the COVID-19 pandemic. So, once more, the last two weeks we held our Collaboration meeting on-line. At this virtual meeting we discussed the many details of building the telescopes, analysing the data and developing the simulation programs.  We are very encouraged by the large progress with constructing the many detector components and the installation of the ARCA and ORCA telescope infrastructures. We are excited by the many analyses of data from the installed detector units on which we will  report at the upcoming conferences. Nevertheless, we  tremendously miss our colleagues.  In particular, for the young scientists in our Collaboration these are difficult times, but they are amazing in their efforts for the Collaboration.

During the Collaboration meeting we virtually said goodbye and thank you to Marco Anghinolfi, who will be retiring soon after many years of service to the Collaboration.  We hope you enjoy your retirement. Arrivederci, but no goodbye!

We virtually raised a glass to thank Mauro Taiuti for his four years of leadership as Spokesperson of KM3NeT. Fortunately, he has promised to continue his scientific career in the Collaboration!

We are looking forward to the new leadership of Paschal Coyle and his team. All the best for executing the tremendous task ahead of building the telescopes and executing the scientific program – also in corona times. We will do our best to support you!

We virtually applauded our PhD students who have recently completed their theses and wished our postdocs leaving the Collaboration all the best for their careers!

We virtually welcomed new students and postdocs who will work on the nitty gritty of data analysis and detector calibration. We hope to meet you face-to-face very soon!

Last but not least, we  virtually welcomed LPC Caen, France as a new group in the collaboration who  will participate in both the construction work and the scientific program. Super!

On the bright side of virtual meetings our conference committee reported a more diverse participation of our Collaboration in the international conferences. More people took part and the representation among speakers was better balanced in seniority and gender.

Building and operating a telescope is an attractive, tremendous, collaborative effort relying on  a lot of human interaction, hard to recreate in a virtual environment – but we did our best! We were still able to generate our customary  Collaboration group picture as you can see below: a collaboration in corona times.